157 research outputs found

    Rice microtubule‐associated protein IQ67‐DOMAIN14 regulates rice grain shape by modulating microtubule cytoskeleton dynamics

    Get PDF
    Cortical microtubule (MT) arrays play a critical role in plant cell shape determination by defining the direction of cell expansion. As plants continuously adapt to ever‐changing environmental conditions, multiple environmental and developmental inputs need to be translated into changes of the MT cytoskeleton. Here, we identify and functionally characterize an auxin‐inducible and MT‐localized protein OsIQ67‐DOMAIN14 (OsIQD14), which is highly expressed in rice seed hull cells. We show that while deficiency of OsIQD14 results in short and wide seeds and increases overall yield, overexpression leads to narrow and long seeds, caused by changed MT alignment. We further show that OsIQD14‐mediated MT reordering is regulated by specifically affecting MT dynamics, and ectopic expression of OsIQD14 in Arabidopsis could change the cell shape both in pavement cells and hypocotyl cells. Additionally, OsIQD14 activity is tightly controlled by calmodulin proteins, providing an alternative way to modify the OsIQD14 activity. Our results indicate that OsIQD14 acts as a key factor in regulating MT rearrangements in rice hull cells and hence the grain shape, and allows effective local cell shape manipulation to improve the rice yield trait

    Evolution of nuclear auxin signaling : Lessons from genetic studies with basal land plants

    Get PDF
    Auxin plays critical roles in growth and development through the regulation of cell differentiation, cell expansion, and pattern formation. The auxin signal is mainly conveyed through a so-called nuclear auxin pathway involving the receptor TIR1/AFB, the transcriptional co-repressor AUX/IAA, and the transcription factor ARF with direct DNA-binding ability. Recent progress in sequence information and molecular genetics in basal plants has provided many insights into the evolutionary origin of the nuclear auxin pathway and its pleiotropic roles in land plant development. In this review, we summarize the latest knowledge of the nuclear auxin pathway gained from studies using basal plants, including charophycean green algae and two major model bryophytes, Marchantia polymorpha and Physcomitrella patens. In addition, we discuss the functional implication of the increase in genetic complexity of the nuclear auxin pathway during land plant evolution

    Regulation of intercellular TARGET OF MONOPTEROS 7 protein transport in the Arabidopsis root

    Get PDF
    Intercellular communication coordinates hypophysis establishment in the Arabidopsis embryo. Previously, TARGET OF MONOPTEROS 7 (TMO7) was reported to be transported to the hypophysis, the founder cell of the root cap, and RNA suppression experiments implicated its function in embryonic root development. However, the protein properties and mechanisms mediating TMO7 protein transport, and the role the movement plays in development remained unclear. Here, we report that in the post-embryonic root, TMO7 and its close relatives are transported into the root cap through plasmodesmata in a sequence-dependent manner. We also show that nuclear residence is crucial for TMO7 transport, and postulate that modification, potentially phosphorylation, labels TMO7 for transport. Additionally, three novel CRISPR/Cas9-induced tmo7 alleles confirmed a role in hypophysis division, but suggest complex redundancies with close relatives in root formation. Finally, we demonstrate that TMO7 transport is biologically meaningful, as local expression partially restores hypophysis division in a plasmodesmal protein transport mutant. Our study identifies motifs and amino acids that are pivotal for TMO7 protein transport, and establishes the importance of TMO7 in hypophysis and root development

    RIdeogram : Drawing SVG graphics to visualize and map genome-wide data on the idiograms

    Get PDF
    Background. Owing to the rapid advances in DNA sequencing technologies, whole genome from more and more species are becoming available at increasing pace. For whole-genome analysis, idiograms provide a very popular, intuitive and effective way to map and visualize the genome-wide information, such asGCcontent, gene and repeat density, DNA methylation distribution, genomic synteny, etc. However, most available software programs and web servers are available only for a few model species, such as human, mouse and fly, or have limited application scenarios. As more and more non-model species are sequenced with chromosome-level assembly being available, tools that can generate idiograms for a broad range of species and be capable of visualizing more data types are needed to help better understanding fundamental genome characteristics. Results. The R package RIdeogram allows users to build high-quality idiograms of any species of interest. It can map continuous and discrete genome-wide data on the idiograms and visualize them in a heat map and track labels, respectively. Conclusion. The visualization of genome-wide data mapping and comparison allow users to quickly establish a clear impression of the chromosomal distribution pattern, thus making RIdeogram a useful tool for any researchers working with omics.</p

    An actin remodeling role for Arabidopsis processing bodies revealed by their proximity interactome

    Get PDF
    Cellular condensates can comprise membrane-less ribonucleoprotein assemblies with liquid-like properties. These cellular condensates influence various biological outcomes, but their liquidity hampers their isolation and characterization. Here, we investigated the composition of the condensates known as processing bodies (PBs) in the model plant Arabidopsis thaliana through a proximity-biotinylation proteomics approach. Using in situ protein-protein interaction approaches, genetics and high-resolution dynamic imaging, we show that processing bodies comprise networks that interface with membranes. Surprisingly, the conserved component of PBs, DECAPPING PROTEIN 1 (DCP1), can localize to unique plasma membrane subdomains including cell edges and vertices. We characterized these plasma membrane interfaces and discovered a developmental module that can control cell shape. This module is regulated by DCP1, independently from its role in decapping, and the actin-nucleating SCAR-WAVE complex, whereby the DCP1-SCAR-WAVE interaction confines and enhances actin nucleation. This study reveals an unexpected function for a conserved condensate at unique membrane interfaces

    Probing DNA - Transcription Factor Interactions Using Single-Molecule Fluorescence Detection in Nanofluidic Devices

    Get PDF
    Single-molecule fluorescence detection offers powerful ways to study biomolecules and their complex interactions. Here, nanofluidic devices and camera-based, single-molecule Förster resonance energy transfer (smFRET) detection are combined to study the interactions between plant transcription factors of the auxin response factor (ARF) family and DNA oligonucleotides that contain target DNA response elements. In particular, it is shown that the binding of the unlabeled ARF DNA binding domain (ARF-DBD) to donor and acceptor labeled DNA oligonucleotides can be detected by changes in the FRET efficiency and changes in the diffusion coefficient of the DNA. In addition, this data on fluorescently labeled ARF-DBDs suggest that, at nanomolar concentrations, ARF-DBDs are exclusively present as monomers. In general, the fluidic framework of freely diffusing molecules minimizes potential surface-induced artifacts, enables high-throughput measurements, and proved to be instrumental in shedding more light on the interactions between ARF-DBDs monomers and between ARF-DBDs and their DNA response element.</p

    A plausible microtubule-based mechanism for cell division orientation in plant embryogenesis

    Get PDF
    Oriented cell divisions are significant in plant morphogenesis because plant cells are embedded in cell walls and cannot relocate. Cell divisions follow various regular orientations, but the underlying mechanisms have not been clarified. We propose that cell-shape-dependent self-organization of cortical microtubule arrays is able to provide a mechanism for determining planes of early tissue-generating divisions and may form the basis for robust control of cell division orientation in the embryo. To show this, we simulate microtubules on actual cell surface shapes, from which we derive a minimal set of three rules for proper array orientation. The first rule captures the effects of cell shape alone on microtubule organization, the second rule describes the regulation of microtubule stability at cell edges, and the third rule includes the differential effect of auxin on local microtubule stability. These rules generate early embryonic division plane orientations and potentially offer a framework for understanding patterned cell divisions in plant morphogenesis. Chakrabortty et al. show that a computational model for dynamic self-organization of cortical microtubules on experimentally extracted cell shapes provides a plausible molecular mechanism for division plane orientation in the first four divisions of early stage A. thaliana embryos, in WT as well as two developmental mutants bodenlos and clasp

    DIX Domain Polymerization Drives Assembly of Plant Cell Polarity Complexes

    Get PDF
    The identities of cell polarity determinants are not conserved between animals and plants; however, characterization of a DIX-domain containing protein in land plants reveals that the physical principles of polar complex assembly are preserved across eukaryotes.</p

    Cytokinin response factors regulate PIN-FORMED auxin transporters

    Get PDF
    Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development
    corecore